化学的剥離形成法を用いた単層および2層グラフェンの作製と評価

重本 千尋

本研究ではグラフェン及び2層グラフェンの作製を行った。酸化還元による化学的手法を用い、超音波を印加する方法、印加しない方法の2通りにて実験を行った。

溶液作製後、SiO₂/Si基板に成膜し、ヒドラジン還元によって還元した。印加しない方法では、ヒドラジン還元後、CVDにより還元を行った。

また、AFMによりある程度の範囲を走査測定をしてから、ラマンピークを測定した。

結果として、印加した方法では結果2Dピークがブロードだったものの単層グラフェンの文献値通りの厚さ、Dピーク、Gピーク、強度比の変化等の結果は得られたが、印加しない方法ではグラフェンが得られなかった。

キーワード：グラフェン、2層グラフェン

1. はじめに

現在発見されている超伝導物質では超伝導転移温度Tcが最高でも160Kであるので、実際に利用するには超伝導物質を冷却して冷凍する設備などによる非常に大きいコストが出る問題となっている。そこで我々は、人類の夢である、室温超伝導（Tc>室温）物質の開発を行うことを目標とした。

BCS理論によると、

\[T_c = \Theta_D \exp(-1/\lambda) \]

（但し, \(\lambda = N(0)V \))

で与えられる。ここでN(0)はフェルミ面での状態密度、Vは電子・格子間の相互作用の大きさ、 \(\Theta_D \)はデバイ温度を示している。この式により、臨界温度Tcがデバイ温度に依存するが、 \(\Theta_D \)が小さいとデバイ温度が低い。例えば、ダイヤモンドにボロンをドープした超伝導、炭素の六員環がハニカム構造となった単層のシートが層状に積層されたグラファイトに金属原子をインタカレートした事で、インタカレートの際の歪みや層の隙間の乱れが抑制され、Tcの上昇を見込む。それに対して2層及び2層のグラフェンを定量的に作製する方法を確立する。これまで我々は劈開法を用いたセパレートにより単層及び2層のグラフェンを定量的に作製する手法を確立した。

ここでModified Hummers法と呼ばれる手法を用い、酸化還元による化学的剥離形成法を用いグラフェン、2層グラフェンの作製を行う。この手法は、酸化によりグラファイトの層間に酸素含有基が付加され、酸素含有基に親和性のある水分子が浸透する事により、層間が拡がり単層に剥離されやすくなる。グラファイトを酸化させた後、生成させた超音波印加や
遠心分離を行うことで積層された層が剥離される。結果均一に積層した単層は2層で比較的大面積のグラフェンが得られる。しかし、酸化のプロセスにおいて、酸素含有基が導入される事により電子共役系が破壊され導電性を失う為、導電性を取り戻すために還元を行い酸素含有基を除去する。

2.実験方法
基板は膜厚90nmのSiO₂/Si基板を用いた。基板はアセトン(3min,15min)エタノール(3min)で超音波洗浄を行った。分散溶液作製は超音波を印加する方法、印加しない方法、2つ的方法を用いた行った。

2.1実験方法1(超音波印加)
2.1.1グラファイトの酸化
グラファイトをピンセットで削り、グラファイト粉末0.05gを用意する。グラファイト粉末を濃硫酸(H₂SO₄)に入れ、氷浴させながら攪拌。過マンガ酸カリウム(KMnO₄)をゆっくりと加え攪拌し、35℃で30min反応。その後純水をゆっくり加え、98度で15min反応。純水と過酸化水素水(H₂O₂)(30%)を加え反応停止とする。分量条件を以下の表1に示す。

<table>
<thead>
<tr>
<th>薬品名</th>
<th>製造会社</th>
<th>純度</th>
<th>分量</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>東京化成</td>
<td>97.0%</td>
<td>2.3ml</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>東京化成</td>
<td>99.5%</td>
<td>300mg</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>東京化成</td>
<td>35.0%</td>
<td>0.9ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>・</td>
<td>・</td>
<td>4.6ml,14ml</td>
</tr>
<tr>
<td>H₂N-N</td>
<td>東京化成</td>
<td>98.0%</td>
<td>3ml</td>
</tr>
</tbody>
</table>

2.1.2濾別
反応物を孔径25nmのメンプレンフィルターにて濾別。濾別した反応物を5%の塩酸(HCl)及び純水で充分に洗浄し、乾燥させて酸化グラファイトを得る。

2.1.3分散液溶液の作製
乾燥させた酸化グラファイト粉末0.2mg/mlの濃度で純水に溶解。超音波洗浄機を用いて、超音波を60min印加する。その後、遠心分離機で溶液を30min遠心分離を行い、上澄み液を得て酸化グラフェン分散水溶液とする。

2.1.4酸化グラフェン薄膜の形成
10mm²のSiO₂/Si基板をアセトン3minアセトン15minエタノール3minの順で超音波洗浄した。その後、窒素ガスブロアーで基板表面に付着したエタノールの乾燥を行った。その後基板にUVオゾン処理を施し、作製した酸化グラフェン水溶液200μlを滴下し8h自然乾燥を行う。

2.1.5酸化グラフェン薄膜の還元
シャーレに酸化グラフェン薄膜を積層させたSiO₂/Si基板と、ヒドランジン水和物(H₂NNH₂・H₂O)を染み込ませた濾紙を置き、蓋をしてホットプレートで90℃で15min加熱。SiO₂/Si基板上のグラフェン薄膜を得る。

2.2実験方法2(超音波印加なし)
2.2.1グラファイトの酸化
グラファイトロッド(99.9994%)をピンセットで削り、グラファイト粉末1g用意する。グラファイト粉末を硝酸ナトリウム(NaNO₃)と濃硫酸の混合液に入れ、氷浴、攪拌しながら過マンガン酸カリウム(KMnO₄)をゆっくりと加え攪拌し、5日間放置する。分量条件を以下の表2に示す。

<table>
<thead>
<tr>
<th>薬品名</th>
<th>製造会社</th>
<th>純度</th>
<th>分量</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>東京化成</td>
<td>97.0%</td>
<td>34.5ml</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>東京化成</td>
<td>99.5%</td>
<td>4.5g</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>東京化成</td>
<td>・</td>
<td>0.75g</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>東京化成</td>
<td>35.0%</td>
<td>3ml</td>
</tr>
<tr>
<td>H₂N-N</td>
<td>東京化成</td>
<td>98.0%</td>
<td>3ml</td>
</tr>
</tbody>
</table>

2.2.2グラファイトの酸化
グラファイト粉末を硝酸ナトリウム(NaNO₃)と濃硫酸の混合液に入れ、氷浴、攪拌しながら過マンガン酸カリウムをゆっくりと加え、2h攪拌。そのまま緩やかに攪拌しながら5日間放置する。分量条件を以下の表2に示す。
2.2.2 遠心分離による分散
溶液を 5%硫酸にゆっくり加え、2h 搪拌。溶液を遠心分離（1000rpm10min）し、上澄みを廃棄。遠心管に 3%硫酸と 0.5%過酸化水素水の 1:1 混合液を加え沈殿を再分散してから、遠心分離 (4000rpm 60min) し、上澄みを廃棄。この作業を 15 回繰り返す。その後、遠心管に加える溶液を純水とし、再分散、遠心分離 (4000rpm60min) し、上澄みを廃棄。この操作を 20 回繰り返す。最後に純水を加えて摂拌し、酸化グラフェン分散溶液を得る

2.2.3 酸化グラフェン薄膜の形成
5mm² の SiO₂/Si 基板をアセトン 3min アセトン 15min エタノール 3min の順で超音波洗浄した。その後、室素ガスブロアーで基板表面に付着したエタノールの乾燥を行った。その後基板に UV オゾン処理を施し、作製した酸化グラフェン水溶液 50μl を滴下し自然乾燥を行う。

2.2.4 酸化グラフェン薄膜の還元
シャーレに酸化グラフェン薄膜を積層させた SiO₂/Si 基板と、ヒドラジン一水和物を染み込んだ濾紙を置き、蓋をしてホットプレートで 90℃で 15min 加熱。SiO₂/Si 基板上のグラフェン薄膜を得る。
また、ヒドラジン還元の後 CVD により Ar,H₂ 下で 600℃で 6h 還元を行った。
また、今回 4000rpm で行った遠心分離は本来の文献では 7000rpm であるが、実験機器の仕様上、今回は 4000 で行った。

3 結果
3.1 グラフェン探索結果
実験方法 1
図 3.1a) に基板上の光学顕微鏡像を、(b) に AFM 像を、(c) に (b) の黄枠線の部分のラインプロファイルを示す。また、(b) の AFM 像の測定範囲を(a) の光学顕微鏡像内に黄枠線で示す。

図 3.1(a),(c) より、グラフェンの文献値通りの厚さ 0.98nm の物質を見つけた。この部分のラマンピークを図 3.2 に示す。図 3.2 より、D ピーク、G ピークは確認出来たが、2D ピークはブロードなピークとなって表れた。グラフェンの文献値である強度比の反転とピークの低エネルギー側へのシフトは起きている。

3.2 2 層グラフェン探索結果
図 3.3(a) に基板上の光学顕微鏡像を、(b) に AFM 像を、(c) に (b) の黄枠線の部分のラインプロファイルを示す。また、(b) の AFM 像の測定範囲を(a) の光学顕微鏡像内に黄枠線で示す。

図 3.3(b),(c) より、グラフェンの文献値通りの厚さ 1.82nm の物質を見つけた。この部分のラマンピークを図 3.4 に示す。
図 3.4 より、単層探索時と同じく 2D ピークはブロードなものとなった。また、ピークの低エネルギー側へのシフトが起いている。

実験方法 2
図 3.5(a) に光学顕微鏡像を、(b) に AFM 像を、(c) にラインプロファイルを示す。図 3.5 より、実験方法 1 の光学顕微鏡像と比べると存在しているグラファイトは小さく、また絶対量も少なかった。また、AFM 像、ラインプロファイルより実験方法 1 のように、グラフェンらしき厚さのものは見つけられなかった。図 3.5 の黄色の破線部分のラマンピークとテープ剥離により作製したグラフェンのピークを図 3.6 に示す。2D ピークのシフトは見られないものの、D ピークの強度が非常に少なくなり、G ピークはしっかりとしたピークが現れた。
図3.1 単層グラフェン探索結果

図3.2 単層グラフェンの可能性のあるラマンピーク

図3.3 2層グラフェン探索結果

図3.4 2層グラフェンと思われる部分のラマンピーク
4. 考察
実験方法1
図3.2、図3.4より2Dピークが非常にブロードなピークになっていたが、グラフェン、2層グラフェンの文献値通りの厚さ0.98nm、1.82nmとDピーク、Gピークを観測する事が出来た。

AFMのラインプロファイル、ラマンピーク双方の測定結果より、厚さの文献値、強度比の反転、2Dピークのシフトがこの測定部分がグラフェンである事を示しているが、2Dピークがブロードな原因として、還元を行った後そのままAFMとラマンを測定した為、まだ還元剤等の溶液がグラフェン上に残った、また還元しきれなかった部分が表面にあったのではないかと考える。

実験方法2
図3.6、3.7に関して、グラフェンが存在しなかった理由として、溶液の作製時に遠心分離の回転数が足りなかった、用いたグラファイトロッドが今回の実験に使うのに適していなかった等の理由と考えられる。グラファイトロッドは実験方法1で用いた物とは違い、層がバラバラの方向に向かい合って存在している。削って粉にした際、細かくなった粒子がさらに薄片になる際に細かくなってしまうのではないかと考える。

劈開法で作製したグラフェンと比較すると2Dのシフト等が見られない事がわかることから、ある程度の厚さを持つことがわかるが、Dピーク強度が少ないことから、還元がしっかり行え、結晶性の良いものが得られたことがわかる。

5. 総論
グラファイト超伝導のTc低下抑制の為、2層グラフェン超伝導モデルに着目し2層グラフェン層間に金属原子をインタカレートすることで室温超伝導に至ると考えた。このモデル
を実現するために、酸化還元を利用した化学的剥離形成法に着目し、文献値より結果が明らかになっているグラフェンの作製を目指した。まず各種酸化剤を用いてグラファイトを酸化させ、純水中に分散させた。分散水溶液を基板に成膜させて、還元を行うことで、基板上のグラフェン薄膜を得た。単層に近いグラファイトは光学顕微鏡では見えなかったことから、AFM である程度のグラファイトの周りを探索した後にグラフェンの文献値通りの値が得られた場所を改めてラマン分光器でピークを調べるのが効率的だと考え、これを行った。結果 2D ピークがブロードだったものの単層グラフェンの文献値通りの厚さ、D ピーク、G ピーク、強度比の変化等の結果は得られた。
また、超音波印加の代わりに遠心分離を多く行い、時間をかけることで薄片の細断を防ぐ手法も行った。より還元を進めるとため Ar・H₂ 雲囲気下 600℃にて 6h 還元を行った。しかし、溶液にはほぼグラフェンは分散していない事が示された。還元の結果は D ピークの減少と 2D ピークに示された。
今後の方針として、実験方法 2 の溶液条件の改善と、CVD による真空還元等を行い、より大面積なグラフェン及び 2 層グラフェンの作製を検討する。

6. 参考文献
[5] Fabrication of graphene by chemical exfoliation and its application to transparent electrodes : Kenji Ueno, Koich Suganuma, Masashi Yoshida